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Abstract. In this paper, we investigate mixed bicycle flow using the multi-value cellular automata (CA)
model. Two types of bicycles with different maximum speed are considered in the system. The system
of mixed bicycles is investigated under both deterministic and stochastic regimes. It is shown under the
deterministic case that there appear multiple states both in congested flow and free flow regions. Analytical
analysis is carried out and is in good agreement with the simulation results. Under the stochastic case, the
multiple states effect disappears only when both slow and fast bicycles are randomized. Spacetime plots
are presented to show the evolution of mixed bicycle flow.

PACS. 05.50.+q Lattice theory and statistics – 02.50.Ey Stochastic processes – 64.75.+g Solubility,
segregation, and mixing – 89.90+n Other topics in areas of applied and interdisciplinary physics

1 Introduction

Traffic problems have attracted much attention in recent
decades [1–3]. Traffic flow is a kind of many-body system
of strongly interacting vehicles, and it can exhibit very
complex behavior. Many theoretical models have been
proposed to explore the mechanisms in traffic flow [4–9].
Among them we will focus on Cellular automata (CA)
models. CA has become an efficient tool for simulating
traffic flow, for it is conceptually simple and can be easily
implemented on computers for numerical investigations.

The rule-184 [10] CA is a prototype of all CA models
for traffic flow. In 1992, Nagel and Schreckenberg proposed
the well-known Nagel-Schreckenberg (NS) model [7]. As
an extension of rule-184 CA, higher speeds are allowed
in the NS model. The NS model can reproduce some ba-
sic phenomena encountered in real traffic, such as sponta-
neous jams. However, it cannot explain such empirically
observed phenomena as metastable states, capacity drop
and synchronized flow. Therefore, several improved ver-
sions of the NS model were proposed, such as the antici-
pation model [8], the slow-to-start model [9], etc.

Recently, Nishinari and Takahashi proposed a family
of multi-value CA models [11–13]. Different from previous
cases, in these models each site is assumed to hold L ve-
hicles at most. The basic version of the family is obtained
from an ultradiscretization of the Burgers equation, so it is
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called the Burger cellular automata (BCA). Its evolution
equation is

Uj(t + 1) = Uj(t) + min(Uj−1(t), L − Uj(t))
− min(Uj(t), L − Uj+1(t)) (1)

where Uj(t) represents the number of vehicles at site j and
time t. If it is assumed that the road is an L-lane freeway,
then the model can describe the multi-value traffic without
explicitly considering the lane-changing rule.

The maximum velocity of vehicles in BCA is 1.
Nishinari and Takahashi have extended BCA for the case
of maximum velocity 2 and presented extended BCA
(EBCA) models [13]. Matsukidaira and Nishinari have in-
vestigated the Euler-Lagrange correspondence of cellular
automata models for traffic flow [14,15] and proposed the
generalized BCA (GBCA) model with high speed and long
perspective [16]. In our previous work [17], the EBCA
models were used to model bicycle flow, and stochastic
randomization was introduced into the models.

In real traffic, bicycles do not have the same maximum
velocity due to differences in the personalities of riders. For
example, young riders always tend to ride at high speed,
while old riders usually ride at low speed.

In this work, mixed bicycle flow is investigated using
the EBCA model. There are two kinds of bicycles: slow bi-
cycles with maximum speed 1 and fast bicycles with maxi-
mum speed 2. It is found under the deterministic case that
the multiple states effect occurs both in the free flow and
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congested flow regions. In the stochastic case, the multiple
states effect disappears only when both slow bicycles and
fast bicycles are randomized.

This paper is organized as follows: the model for mixed
bicycle flow is proposed in Section 2. Next the simulation
results are presented and analyzed in Section 3. The con-
clusion is given in Section 4.

2 The multi-value CA model for mixed
bicycle flow

In the EBCA model1, bicycle movement from t to t + 1
consists of the following two successive procedures:

(a) bicycles move to their next site if the site is not fully
occupied;

(b) only bicycles which moved in procedure (a) can move
a further one site if their next site is not fully occupied
after procedure (a).

Therefore, the evolution equation of the EBCA is given by:

Uj(t+1) = Uj(t)+bj−1(t)−bj(t)+cj−2(t)−cj−1(t). (2)

Here bj(t) = min(Uj(t), L − Uj+1(t)) represents the num-
ber of moving bicycles at site j and time t in procedure (a);
cj(t) = min(bj(t), L − Uj+2(t) − bj+1(t) + bj+2(t)) rep-
resents the number of bicycles that can move in proce-
dure (b).

To investigate mixed bicycle flow, two kinds of bicy-
cles, slow bicycles with maximum speed 1 and fast bicycles
with maximum speed 2, are considered in the system. The
number of slow bicycles and fast bicycles at site j and time
t are Us

j (t) and Uf
j (t) respectively. The updating proce-

dures are changed to:

(1) all bicycles move to their next site if the site is not
fully occupied, and the fast bicycles have priority over
slow bicycles;

(2) only the fast bicycles moved in procedure (1) can move
a further one site if their next site is not fully occupied
after procedure (1).

The number of fast and slow bicycles that move one site
at site j and time t in procedure (1) are bf

j (t) and bs
j(t)

respectively. cj(t) represents the number of fast bicycles
that move two sites at site j and time t. The random-
ization effect of slow bicycles is introduced as: bs

j(t + 1)
decreases by 1 with probability ps if bs

j(t + 1) > 0. The
randomization effect of fast bicycles is: cj(t+1) decreases
by 1 with probability pf if cj(t + 1) > 0. The updating
rules are as follows:

Step 1: calculation of bf
j (t + 1), bs

j(t + 1) and bj(t + 1)
(j = 1, 2, . . . , K):
bf
j (t + 1) = min(Uf

j (t), L − Uj+1(t));

1 Here we consider only the EBCA1 model, the extension of
the EBCA2 model to mixed bicycle flow will be carried out in
a future study.

bs
j(t + 1) = min(Us

j (t), L − Uj+1(t) − bf
j (t + 1)),

if rand() < ps , bs
j(t + 1) = max(bs

j(t + 1) − 1, 0);
bj(t + 1) = bf

j (t + 1) + bs
j(t + 1).

bf
j (t+1) is calculated first because the fast bicycles

have priority over slow bicycles.
Step 2: calculation of cj(t + 1):

cj(t + 1) = min(bf
j (t + 1),

L − Uj+2(t) − bj+1(t + 1)
+bj+2(t + 1));

if rand() < pf , then
cj(t + 1) = max(cj(t + 1) − 1, 0).

Step 3: updating Uj(t + 1), Us
j (t + 1) and Uf

j (t + 1):
Uf

j (t + 1) = Uf
j (t) − bf

j (t + 1) + bf
j−1(t + 1)

−cj−1(t + 1) + cj−2(t + 1);
Us

j (t + 1) = Us
j (t) − bs

j(t + 1) + bs
j−1(t + 1);

Uj(t + 1) = Uf
j (t + 1) + Us

j (t + 1).

Here rand() is an uniformly distributed random number
between 0 and 1.

3 Simulation results

In the simulations, L = 4 and K = 100 are selected where
K is the length of the road. Periodic conditions are used
so the bicycles ride on a circuit. In the initial state, slow
bicycles and fast bicycles are randomly distributed on the
road. The proportion of slow bicycles is R. The number
of fast (slow) bicycles in the system is Nf = (1 − R)ρLK
(Ns = RρLK). We note that the new model with R = 0.0
is equivalent to the stochastic EBCA1 model, and that
with R = 1.0 corresponds to the stochastic BCA model.
The average density ρ and flow Q over all sites are de-
fined by

ρ =
1

KL

K∑

j=1

Uj(t) Q(t) =
1

KL

K∑

j=1

(bj−1(t) + cj−2(t)).

(3)

3.1 Deterministic case

In this subsection, we focus on the deterministic case, i.e.,
ps = 0.0 and pf = 0.0. The fundamental diagrams are
shown in Figure 1. In the case of R = 0.0, the multiple
states effect is observed only in the congested flow region
(Fig. 1a). In other words, there is only one branch with
positive slope but there are several branches with negative
slope. The detailed analysis of the multiple states has been
given in reference [13].

When 0 < R < 1, one finds that the multiple states
effect occurs both in the congested flow and free flow re-
gions, i.e., there are several branches with positive slope
as well as several branches with negative slope. With in-
creasing R, the number of branches with positive slope
decreases. Simultaneously, the multiple states effect in the
congested flow region is also suppressed. When R = 1, the
multiple states effect disappears.
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Fig. 1. The fundamental diagrams in the case of (a) R = 0.0
(b) R = 0.2 (c) R = 0.5 (d) R = 0.8 (e) R = 1.0. The red lines
correspond to the analytical values.

Next we focus on the branches with positive slope. Our
simulations show that in the free flow region, every slow
bicycle can move in each time step. Therefore, the average
velocity of the system is given by

v̄ =
Ns × 1 + Nf × v̄f

Ns + Nf
.

Here Ns and Nf are the number of slow and fast bicycles
respectively; v̄f is the average velocity of the fast bicycles.
Since L = 4 is used in the simulations, next four subcases
are classified:

1. There exist four slow bicycles that occupy one site. In
this case, these four slow bicycles form a moving bot-
tleneck by moving side by side. Fast bicycles cannot
overtake them and have to follow behind them. As a
result, v̄f = 1 and v̄ = 1. The flow rate is, therefore,
Q = ρ. This gives the lowest free flow branch in Fig-
ures 1b–1e.

2. There exist at most three slow bicycles at each site. In
this case, there will be one fast bicycle overtaking the
moving bottleneck formed by the three slow bicycles

at each time step. Due to the parallel update rule,
this allows at most K/2 fast bicycles to move with
velocity 2. As a result,

v̄f =
(Nf − K/2)× 1 + K/2 × 2

Nf
for Nf > K/2

and
v̄f = 2 for Nf ≤ K/2.

Therefore, the flow rate is

Q = ρ

[
Ns × 1 + Nf × 2

Ns + Nf

]
for Nf ≤ K/2 (4)

and

Q = ρ

⎡

⎣
Ns × 1 + Nf × (Nf−K/2)×1+K/2×2

Nf

Ns + Nf

⎤

⎦

for Nf > K/2. (5)

Substituting Ns = ρKLR and Nf = ρKL(1 − R) into
equations (4) and (5), one has

Q = ρ(2 − R) for ρ ≤ 1
2L(1 − R)

(6)

and
Q = ρ +

1
2L

for ρ >
1

2L(1 − R)
. (7)

Equation (7) gives the second lowest free flow branch
in Figures 1b and 1c, and equation (6) gives the high
free flow branch in Figure 1d.

3. There exist at most two slow bicycles at each site. In
this case, there will be two fast bicycle overtaking the
two slow bicycles each time step. This allows at most
K/2 × 2 = K fast bicycles to move with velocity 2.
Similarly to case 2, we have

Q = ρ(2 − R) for ρ ≤ 1
L(1 − R)

(8)

and
Q = ρ +

1
L

for ρ >
1

L(1 − R)
. (9)

Equation (9) gives the second highest free flow branch
in Figure 1b, and equation (8) gives the high free flow
branch in Figure 1c.

4. There exists at most one slow bicycle in each site. Sim-
ilarly to cases 2 and 3, we have

Q = ρ(2 − R) for ρ ≤ 3
2L(1 − R)

(10)

and
Q = ρ +

3
2L

for ρ >
3

2L(1 − R)
. (11)

Equation (10) gives the highest free flow branch in
Figure 1b. The states determined by equation (11) are
unstable and will transit into congested states.
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Fig. 2. Spacetime plots of the deterministic case when R = 0.5, ρ = 0.4. (a) (c) and (e) show the number of slow bicycles in
each site, while (b) (d) and (f) show the number of fast bicycles in each site. The bicycles move from left to right, and the
vertical direction (down) is (increasing) time. (a) and (b) in low branch; (c) and (d) in mid branch; (e) and (f) in upper branch.

From Figure 1, we can see that the simulation results are
consistent with the analytical results, except that some
high flux states are not reached in the simulation. In real
bicycle flow, a group of cyclists may ride together because
that they are class mates, friends or colleagues. They will
occupy a large part of the cycle lane, thus the bicycles that
follow are blocked. We argue that the multiple states effect
in the free flow region surely occurs in real bicycle flow.

Next some spacetime structures of the mixed bicycle
flow are investigated to illustrate the above analytical re-

sults. We choose the parameters R = 0.5 and ρ = 0.4.
There are three flow rates corresponding to the density:
Qlow = 0.4, Qmid = 0.525 and Qup = 0.6. In the low
branch (Figs. 2a and 2b), there exist four slow bicycles
moving side by side. The fast bicycles cannot overtake
these four bicycles and assemble behind them. As a result,
the fast bicycles and the slow bicycles are well separated.
In the mid branch (Figs. 2c and 2d), there exist at most
three slow bicycles in each site. As a result, only one fast
bicycle can overtake these three bicycles in each time step.
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Fig. 3. The fundamental diagrams with different values of ps

when pf = 0.0. (a) R = 0.2 and (b) R = 0.5.

Fig. 4. The fundamental diagrams with different values of pf

when ps = 0.0. (a) R = 0.2 and (b) R = 0.5.

Thus, fast bicycles form a steady state “· · · 01010101 · · ·”
downstream of the three slow bicycles. In the up branch
(Figs. 2e and 2f), there exist at most two slow bicycles in
each site, and both the slow bicycles and the fast bicycles
are moving with free flow speed because Nf ≤ K/2 × 2.

3.2 Stochastic case

In this subsection, we investigate the effect of randomiza-
tion in the mixed bicycle flow. To this end, two typical
values of R are chosen: R = 0.2 and R = 0.5.

Firstly we consider the case pf = 0 and ps > 0. From
Figure 3, one can see the multiple states effect does not
occur in the free flow region but still exists in the con-
gested region. This is because with the consideration of the
randomization effect of slow bicycles, a stationary mov-
ing bottleneck will not exist. A large moving bottleneck
may split into several small ones and several small mov-
ing bottlenecks may merge into one large one. This breaks
the mechanism of multiple branches shown in the previous
subsection.

The fundamental diagram only slightly depends on
the value of ps when the ratio of slow bicycles is small
(Fig. 3a). However, when the ratio of slow bicycles in-
creases, the maximum flow rate notably decreases with
the increase of ps (Fig. 3b).

Next we consider the case pf > 0 and ps = 0. Fig-
ure 4 shows the multiple states effect does not occur in
the congested flow region. However, there always exists
two branches in the free flow region. The branch Q = ρ

Fig. 5. Time evolution of the flux at ρ = 0.4 in the case of
R = 0.5. The parameters are ps = 0.0 and pf = 0.3. Note that
the duration of large flow rate depends on the initial condition
and the system size K.

(the low branch) exists because once four slow bicycles
appear in one site, this moving bottleneck will not dis-
solve since no randomization is exerted on slow bicycles.
The high branch exists in the situations that four slow
bicycles never appear in one site. When the ratio of slow
vehicles is small, the chance that four slow bicycles appear
in one site is small. As a result, the data points on the low
branch are sparse (Fig. 4a).

The value of pf only affects the high branch. As pf

increases, the flux in the free flow region decreases. We also
note that there is a gap between the high branch and the
congested branch in the case of R = 0.5. This is because
in the intermediate range of density, the appearance of
four slow bicycles in one site will always occur sooner or
later. For example, see Figures 5 and 6. Initially there
are not four bicycles occupying one site. As a result, a
large flow rate is maintained. After some evolution time,
four slow bicycles accumulate on one site. This moving
bottleneck will not dissolve and it hinders the movement
of fast bicycles. Consequently, a flow rate drop appears.

In contrast, the probability that four slow bicycles ap-
pear in one site is small in the intermediate range of den-
sity in the case of R = 0.2. Therefore, there is not a gap
between the high branch and the congested branch.

Figures 7a and 7b show the results with randomization
parameter ps > 0 and pf > 0. One can see that the mul-
tiple states effect disappears even if ps and pf are slightly
larger than zero. As ps and pf increase, the maximum
flow rate decreases and the density corresponding to the
maximum flow rate increases.

Finally, we would like to point out the properties of
mixed bicycle flow are different from that of mixed ve-
hicle flow. In mixed vehicle flow, the flux is constrained
by the plug formed by slow vehicles [18,19]. The funda-
mental diagram will be essentially the same as in the case
of R = 1.0 even if only a small number of slow vehicles
are introduced into the system. However, in mixed bicycle
flow, introducing a small proportion of slow bicycles will
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Fig. 6. The spacetime plot of the number of slow bicycles in each site around the transition from high flux to low flux in
Figure 5. The formation of a 4-lane blockage is marked with a line.

Fig. 7. The fundamental diagrams with different values of ps

and pf . (a) R = 0.2 and (b) R = 0.5. The solid line corresponds
to the case of R = 1.0 with ps = 0.0.

not affect the flow rate so much. This can be seen from
Figure 7, in which the flow rate in the case of R = 0.2 is
significantly larger than in the case of R = 1.0. We believe
this difference is mainly because the bicycle lanes are not
so clearly separated from each other as vehicle lanes.

4 Conclusion

In this paper, mixed bicycle flow is investigated using the
multi-value CA model. Both the deterministic and the
stochastic case are studied. The fundamental diagrams
and the spacetime plots are analyzed in detail.

In the deterministic case, the multiple states effect ex-
ists both in the free flow and congested regions. The site
which contains the largest number of slow bicycles forms
a moving bottleneck to the system and the flux is con-
strained by this bottleneck. The simulation results are
consistent with the analytical ones.

In the stochastic case, the multiple states effect disap-
pears in the free flow region when ps > 0.0, and it disap-
pears in the congested region when pf > 0.0. The multiple
states effect disappears when both slow bicycles and fast
bicycles are randomized.

In our future work, we will extend the EBCA2 model
to study mixed bicycle flow and compare the results of the
two models. The calibration and verification of the models
using real bicycle flow data will also be performed.
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